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Effective diffusivity of a y/y’ alloy
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When does Deff exist?




Generalizations of the problem

Diffusion in a general two-phase alloy with a periodic structure

Diffusion in a continuum with periodic diffusivity D;(x)

Include sink/source functions

Include segregation in phases

" Include driving force

Atomic diffusion on superlattices
* |nterstitial diffusion in crystals with multiple occupation sites
* Grain boundary diffusion

* Diffusion along a dislocation core



The problem of effective diffusivity

Exact diffusion equation:
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Effective diffusion equation:
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Periodic alloy
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Existence of effective diffusivity

@ — Z Def L@ <...> - average over a repeat cell
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Step 1: solve three steady-state problems on a repeat cell:
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with boundary conditions: | .

P (4, %5, %) = 9, (0, X, X3) + Oy ) A g

P (X, 4, X3) = 0, (X,0,%3) + 6y, X1 g

O (X X0, A) = 0, (X1, %5,0) + 6,5
Step 2: find D" as follows: D" =A) (D 993
' ij | -~ im 6Xm

NB: Even if the local diffusivity is isotropic, the effective diffusivity can still be a
tensor, reflecting the structural anisotropy.




Variational calculation of the effective diffusivity

Step 1: Minimize three functionals:

®, = /12<Z p, 29 9% > k=123
T OX. 8xj

with boundary conditions:
P (A, %5, %3) = 9, (0, %5, X3) + Sy
P (X1, 4, %3) = 0, (X,0,%3) + O
P (X1, X, A) = @ (X1, %,,0) + 65

0.
Step 2: find Di?ff as follows: Di?ff = ,12<Dim a¢1>
- X,

In the principal coordinate system the minimum values of ®,
coincide with eigenvalues of Di?ff:

(@ )y =D, k=123



Upper and lower bounds from the variational approach

Suppose the local diffusivity is isotropic: D;; = &;D(x).
Bounds of D" :
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Example: diffusion in a y/y’ - type structure
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Upper bound:
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“Smart” guess: D ~




Maxwell formula for the effective diffusivity®
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d = dimensionality of space

v=0 — Df=D

v=1 — Deff=D
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m Expected to work well in isotropic structures

*) J.C. Maxwell, Treatise on Electricity and Magenetism, 3" Edition
(Clarendon Press, Oxford, 1904)



Comparison of different solutions

Fast diffusion in particles

Cubic particles
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" The gap between the bounds is relatively narrow

Slow diffusion in particles
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" The average between the bounds is an excellent approximation
= Maxwell is astonishingly good




How to include the segregation

Introduce a period potential u(x) on diffusing atoms.

u(x)

Equilibrium distribution of atoms: Ceg (X) =c, exp(— Fj

Effective diffusion equation

o) g e 0

ot 4" oxox,

Def is obtained by replacing D;(x) by
Ceq (X)
(Ceg (X))

and applying the same procedure as before.

D; (X)

For a two-phase alloy we can reuse all previous solutions with the substitutions

c
D, — D,— = D, — D, p
ve, +(L-v)c, ve, +(1-v)c,




Effect of segregation on diffusion
Cubic particles

Fast diffusion in particles Slow diffusion in particles
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= Segregation in particles — = Segregation in particles — lack of
trapping — low Deff fast diffusion paths + trapping —
very low Deff

= Segregation in matrix — lack of

fast diffusion paths — low Deff = Segregation in matrix — axcess
to fast diffusion paths — large Deff



Effect of segregation on diffusion
Weakly inhomogeneous systems

(aDY) ((au)) _(aDav) | AD=D-(D)
3(D)  3kT) 3(DKT| Au=u-—(u)
/ f \
Variation of diffusivity Segregation Diffusion-segregation
correlation

D' =(D)|1-

Uncorrelated fluctuations always slow down the effective diffusivity




Further generalizations

General form of the effective diffusion equation:
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= U -"“slow” field: |[VU|L << U

" The “fast” component of field, u(x), is incorporated into Deff

= f(x,t) — sink/source function

This generalization does not affect the calculation of Deff |




Discrete model

@ .\ " N sites per repeat cell
= Site energies u(x)
.47./ " Jump rates I'(x,X’)
° ®) \ ;
o How to find Deff ?

Is
_____

Examples of applications:

= |nterstitial diffusion in crystals with multiple occupation sites.
For example, T and O sites in BCC and HCP crystals

= Grain boundary diffusion
= Diffusion in dislocation cores

= Diffusion in polymers



Exact solution of the model

D" = > c()I(x,x' )X, =X )[(x'j—xj)+ S, (x')- Sj(x)]
DX}

- equilibrium occupation probabilities

S(x) — displacement vectors (Huntington and Ghate, 1962)

They must be determined by solving the 3Nx3N linear system:

> T(x,x)S(X") = S(x) + (x—x")]=0

-1
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Variational formulation and bounds

The displacement vectors can be found by minimizing the functions
@, = > (), xN(x,—x )+ S;(x) =S, =123
{x.x}

In the principal coordinate system the minimum values of
®, coincide with eigenvalues of D;" :

® ) =D, i=123
( k)mln i

This allows calculations of bounds of D"
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Summary

= Effective diffusivity in any periodic system, atomic or
continuum, can be calculated exactly or approximated
by bounds

" The discrete model can be used for numerical
solution of the continuum problem

= Segregation, driving forces, sinks and sources can be
readily included

" The discrete model does not include the defect-
Induced (Bardeen-Herring) correlations



